Paratopological and semitopological groups versus topological groups
نویسندگان
چکیده
منابع مشابه
About remainders in compactifications of paratopological groups
In this paper, we prove a dichotomy theorem for remainders in compactifications of paratopological groups: every remainder of a paratopological group $G$ is either Lindel"{o}f and meager or Baire. Furthermore, we give a negative answer to a question posed in [D. Basile and A. Bella, About remainders in compactifications of homogeneous spaces, Comment. Math. Univ. Caroli...
متن کاملL-FUZZIFYING TOPOLOGICAL GROUPS
The main purpose of this paper is to introduce a concept of$L$-fuzzifying topological groups (here $L$ is a completelydistributive lattice) and discuss some of their basic properties andthe structures. We prove that its corresponding $L$-fuzzifyingneighborhood structure is translation invariant. A characterizationof such topological groups in terms of the corresponding$L$-fuzzifying neighborhoo...
متن کاملPRECOMPACT TOPOLOGICAL GENERALIZED GROUPS
In this paper, we introduce and study the notion of precompacttopological generalized groups and some new results are given.
متن کاملRemarks on extremally disconnected semitopological groups
Answering recent question of A.V. Arhangel’skii we construct in ZFC an extremally disconnected semitopological group with continuous inverse having no open Abelian subgroups.
متن کاملNormed versus topological groups: Dichotomy and duality
The key vehicle of the recent development of a topological theory of regular variation based on topological dynamics [BOst-TRI], and embracing its classical univariate counterpart (cf. [BGT]) as well as fragmentary multivariate (mostly Euclidean) theories (eg [MeSh], [Res], [Ya]), are groups with a right-invariant metric carrying flows. Following the vector paradigm, they are best seen as norme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2005
ISSN: 0166-8641
DOI: 10.1016/j.topol.2003.08.035